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Coulomb Pair Density Matrix I 
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The Coulomb pair density matrix Gin(r, r') for attractive and repulsive potentials 
is not only interesting for determining the two-particle effective potentials, but 
it is also essential in numerical studies of quantum systems. A high-temperature 
approximation is obtained for log Gt~(r, r'), in the form of simple integrals or 
series expansions; large-distance expansions are also given. 

KEY WORDS: Quantum statistical mechanics; elementary processes in 
plasma. 

1. I N T R O D U C T I O N  

The Coulomb pair density matrix Gp(r, r') is not a new subject! Many 
theoretical and computat ional  studies have been devoted to it. The 
theoretical papers ~x 5~ have only dealt with the self term ( r ' = r )  and the 
exchange term ( r ' = - r ) ,  in the high- or low-temperature limit and for 
small or larger.  The computat iona!  studies 16'7~ have of course yielded 
quantitative and general results, but they need quite heavy means because 
the function G~(r, r') is expanded on bound and cont inuum eigenfunctions 
of the Hamiltonian. Moreover,  some difficulties arise from cancellations 
between various contributions. 

Thus it is worthwhile to come back to this subject with the goal of 
providing general results (whatever r and r '  are, for attractive and repulsive 
potentials) which have to be quantitative (accurate), straightforward 
(well-converging series or simple integrals), and valid for large domain of 
temperature. This program would most probably be much too ambitious 
if it was not for the Coulomb potential. This is in fact weakly singular 
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at the origin and it behaves magically with respect to space averaging. 
Consequently the function log Go(r, r') is a very well-converging series in 
the power of the potential and the coefficients (functions of r and r') are 
quite simple functions which do not depend on the sign of V, while the 
Hamiltonian spectra are very different in both cases. These functions shall 
be determined by series expansions or simple integrals from which large- 
distance expansions are easily obtained. 

We will present these various results in several papers. The present one 
is devoted to the first order. A different method is applied to reach the 
following orders, and will be presented in a second paper. Finally, a third 
paper will concern the semiclassical approximation (valid in the low- 
temperature range) with special emphasis on the question of crossing the 
turning point on the classical trajectory. 

In this paper, devoted then to first order, we first introduce (Section 2) 
various notations and equations and discuss different behaviors ~ as a func- 
tion of temperature and distances. In Sections 3-5 the first-order functions 
are obtained as integrals, series, and asymptotic expansions. The limits for 
self and exchange terms are considered in each case. In Section 6, this 
first-order approximation is compared with computational results of 
Pollock. Finally, Section 7 concerns the integrals of Go(r, r') which arise in 
virial coefficients. 

2. DEFINIT IONS A N D  N O T A T I O N S  

The temperature T is introduced by the time z, 

h 
z = f l h = -  (1) 

T 

The relative pair density matrix Go(r, r') is defined by 

6~(,', r ' ) - -  ("1 e - 'T/h I r ' )  (2) 

where H is the two-body Hamiltonian 

h 2 
H =  -~mnZ/+ V(r) (3) 

m is the reduced mass (m,,/2 for two electrons), and V(r) is the Coulomb 
potential 

Ct 
V(r) = - ,  G = sgn(ct) = -I-1 (4) 

r 

We shall be concerned with both the repulsive (e ,=  I) and attractive 
(e= = - 1 ) cases. 
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If 0 denotes the angle between the two vectors r and r', the density 
matrix Gt~(r, r') depends only on two independent quantities, which are 
functions of I'1, If't, and 0. Thus, we introduce the following variables: 

I r - , " l  (2m'~ '/2 ' I r l + l r ' l ( 2 m ' ~  '/2 
/~ = 2 \ ~ - z J  v = ~ \ t i t  J = g/~ 

(5) 
g>~l ,  x, , ,= g2--  1 >/0 

~. = [ h U ( 2 m ) ]  1/2 is the thermal de Broglie wavelength. 
The quanti ty g varies from the value 1 for the exchange case ( r ' =  - r )  

to infinity for the direct case ( r '=  r). We shall also use quantities in a tomic 
units, denoted by an asterisk: 

2m I~1 2mo~2 
r * = ~  (6) r* = r h2 , h3 

For  two electrons r * =  1 corresponds to a distance h2/m,,e 2 =0.53 1~ and 
3" = 1 corresponds to a temperature  mee4/h 2 = 27 eV = 3.2 x 105 K. 

In the perfect gas limit (c~--. 0) G~ tends to G ~ 

( m ~ Z / 2 e _ / .  
G~ r' ) = \ 2xhr  ] (7) 

The effective potential  P~(r, r') is defined by 

Gr(r, r') = G~ r') e - e'~'''~ (8) 

and the function S,(r, r ' )  is also introduced: 

s, p , + s  ~ 
G,(,', r ' ) =  e - s'~'r'', 7 - =  7 -  

(9) 
m 3 2xh,  

S~ r') = ~ ( r - -  r') 2 + ~ h log - - m  

F rom the definition (2) for G~, there follow the differential equations 
for G~(r, ,"), SAr ,  r'), and Pd r ,  r '):  

h 2 

1 I7 
- O , S ,  = 2-.-~n (VS~) 2 -  V(r ) - - - z lS~2m (10) 

d f O + ( r - r ' )  i h 1 h 
-~z P , = -~, , V P , = -- -~m ( V P ,  ) 2 + -~ V ( r ) + ~--~m A P ,  
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with the initial condition 

G~(r, r') ~ 6(r - r') (11) 

The equation for S~ is a diffusion equation (term dSr) with a "trajec- 
tory" term (VS) 2 and a "source" term V(r). If the term zlS~ is removed, this 
is the Hamilton-Jacobi equation for the classical action in a potential 
- V(r). Now if the term (VSr) 2 is removed instead of dS~, this is a diffu- 
sion equation with a source term. Thus, we are dealing with a diffusion 
around the classical trajectory in the potential - V(r). One term is compet- 
ing with the other one. In the framework of the Feynman path integrals, 
the term (VS~) 2 favors the paths closer to the classical path(s) which 
minimize(s) the action for the motion from r' to r in time 3, whereas the 
term dS~ tends to spread out the paths. Various behaviors follow according 
to the values of r, r', and r. We shall discuss this point in the next section. 

If V does not depend on r, the exact solution is P~ = r V/h. Now for 
a really r-dependent potential, hPJz  will be obtained by averaging the 
potential twice, once on the trajectory from r' to ," and once more around 
the trajectory because of the diffusion. Thus P~ is normally a more regular 
function than V(r). From the special properties of the function 1/r in the 
average process, P~ is a very smooth function, finite and regular at short 
distances, and, on the contrary, less convergent than 1/r at large distances. 

3. THE VARIOUS RANGES OF TEMPERATURES 

r* = 1 is clearly a boundary between two ranges of temperatures. 

3.1. High Temperatures T * < I  

In this domain the term (VP~) 2 in the equation for P~, (10), is always 
small compared with the others and the only scale of length is ~ =  
[hr/(2m)]'/2. For distances smaller than ~, the diffusion dominates: hPJr  
is essentially the average of the potential on a volume of the order of Z3 
around the points r and r', and then is of the order of ~/L which leads to 
P~ proportional to (r*) ~/2. For increasing distances, the average on the 
previous volume becomes an average on the linear trajectory of the free 
motion from r' to r during r. The term r - l ( r - r ' ) .  VP~ becomes the domi- 
nant term instead of AP,,  and P~ tends to ctz/r if r '=r,  and to c~r/Ir-r'l 
multiplied by a logarithmic function of the distances in the general case. 
For r ' = - r  the diffusion cannot be completely neglected, because the 
trajectory goes through the center of forces. 
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For any g, the quantitative measure of the crossover from diffusive 
to asymptotic behavior is v - ' - # 2 ~  1 or rr'cosO/2~L 2, which is not 
equivalent to saying that the minimum distance from the trajectory to the 
center of forces is of the order of L In the general case (0r P~ tends 
exponentially to its asymptotic limit. For 0 = ~ no such transition occurs, 
because the diffusion does not vanish. The very slow decrease of IP~] at 
large distances is sizable for the integrals of G,; for example, the exchange 
integral S drG,(r,-r) is exponentially increasing (ct<0) or decreasing 
(ct > 0) as the temperature decreases. 

3.2. L o w  T e m p e r a t u r e  T* > 1 

Here we have three length scales, 

h 2 /'lcxl'~'/3 
2m i ~ - <  r2/3 !t~-~Tm,~ < r - ~ -  or 1 < (r*)2/3 < r* 

in atomic units. Let us start with the largest distances, >r~/h. The terms 
(VP~)-' and AP~ are small compared with the others. It is the same 
asymptotic behavior as for high temperatures; hPJr is the average of V(r) 
on the uniform and linear trajectory from r '  to r. 

For r< r~ /h ,  the potential V(r) becomes sizable in the exponential 
function because flV is larger than 1, but V is not dominant as long as r 
is larger than z213(O:/2m) 1/3. The average is always practically the previous 
one with corrections in ct'-, ct 3 ..... which come from the term (VP~) 2 and the 
diffusion remains negligible. It appears that the lower limit for r does not 
depend on h and the Kepler's law can be recognized in r 2 proportional 
to r 3. 

For lower distances, the potential dominates via the term (VP~)'- and 
the diffusion remains a corrective term. The leading contributions come 
from the neighborhoods of Kepler trajectories (hyperbola, then ellipse). 
The time allowed for the path from r' to r becomes enough to explore 
domains where the value of the potential is smaller in order to decrease the 
action of the path. It is the semiclassical domain where the term AS~ is 
treated as a perturbation except near the turning point of the trajectory. 
The semiclassical approximation is all the more valid since the temperature 
is smaller. The lower spatial limit is the Bohr radius. 

When r is still smaller, all the terms have to be kept. It is the "hard 
quantum" domain (r* > 1, r* < 1 ). Nevertheless, it must be observed that 
the semiclassical value of P~ for r* ~ 1 tend to the exact value at the origin 
when the distances decrease just before diverging because of the sudden 
breakdown of the semiclassical approximation when the distances go to 
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zero. The leading contributions always come from the neighborhood of the 
Kepler trajectories, but the "width" of the paths is of the order of r and 
then is badly evaluated by the semiclassical approximation. 

Since the semiclassical approximation remains valid for large distances 
(>rot/h), this approximation correctly gives the values of P, in all the 
low-temperature domain except near the origin (r* < 1). 

Some limitations have to be expressed for the attractive case because 
the turning point of the trajectory, which needs a special treatment, is 
located closer to the origin than in the repulsive case. 

By comparing high with low temperatures, it is observed that for 
r * <  1 the potential is never dominant because the time allowed for the 
path is too small when the diffusion is weak and, when the potential 
becomes sizable, flV~ 1, near the origin, the diffusion is strong. For r* > 1, 
on the contrary, the potential is always dominant as soon as flV is of the 
order of 1, and the thermal de Broglie wavelength does not appear as a 
distance scale. Finally we notice that all the boundaries of the various 
domains cross at the point 3*= r*= 1. 

4. INTEGRAL S O L U T I O N  FOR HIGH T E M P E R A T U R E  

We start from Eq. (10) for P~, which we write in the form 

( d  h ) 1 h d O r - r '  
dr 2m A P~=-hV(")-~m(VP~)2' dr Oz + r .V (12) 

This is a diffusion equation in a coordinate system which moves uniformly 
from r' to r during the time z. The right-hand side is a source term. From 
the definition of P~, it follows that P~ = 0 if V = 0, P~ = z V/h if V V= O, and 
P~=O as r ~O. 

is 

Moreover, it is easily shown that the solution of 

~-5-~m A r~o')=Z(r),  F~=o=O (13) 

F ' ( r ) = f o d r l f d r l f ~ ( r ' + r ' + r ~ ( r - r ' ) )  (14) 

0 G ~ ~(r - r ' )  
"r r ~ O  

e - ( m / 2 h r ) ( r  - r '  )2 

where G O is defined by 

(O~-2-~A) G~ r') = 0, 

=('U- 
G~ r') \2nhr] 

(15) 
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F~(r)/z is obtained by averaging twice the function f~(r). The first average 
is made on the uniform motion from r' to r during the time z. The second 
one is a space average of width (hz/m) 1/2 around the motion. F~/z is then 
smoother than f~. 

P~ is then given by (14) with the r.h.s, of (12) as f~(r). For  a regular 
potential, it is sensible to look at an expansion in powers of V, by solving 
iteratively the equation and beginning with V(r)/h for the first f,(r). The 
first-order solution is then P~ = P~'~: 

P'~" ( r , r )=~ f ld z ,  fdr ,  V r ,+r '+Z-A( r - r  ') G O 

By taking the integral 

I 1 1 e_r~/o 1 e r f ( ~ a a )  
dr, ]r, + ro[ (/ta) 3/2 = t'-"O 

( e r f = e r r o r  function) into account, we get 

(16) 

(17) 

- v Irl+lr'l 2~1-3  /7 = Irl Ir'____~l Ihl < 1, g /> 1, 2 = ( 2 0 )  
[r--r'[ ' p [r-- r'] r 

we calculate Ir' + r l ( r -  r')/vl in (18) and obtain for I 

1 ~+l d2 erf /1 22 
I =  ~ o_ i (2 z + 22gh + g2 + h 2 _ 1 ),/2 1 - -  

By integrating over x, 

22 + 22gh+ g2 +h 2 -  1 
x -  1 - 2  z 

,/2) 
(21) 

(22) 

We shall transform this expression into two other integrals which exhibit 
explicitly the dependence of P~ on only two space quantities (/a, g) or 
(p, v). Moreover,  these new expressions will allow us to obtain pl,~ as a 
series. 

First we in t roduce / ,  

P~')(r, r ')  = e~(T*) '/2 I(p, g) (19) 

which will then depend on only two variables. With the help of 

~ f~ 1 Ir '+(r t / r ) ( r -r ' ) l  (18) 
P~ll(r,r')=-~ dri Ir' +(r l / r ) ( r -r ' ) ]  erf [2hrl(r--r,)/mr]l/2 
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instead of 2, we shall prove that I does not depend on h. The derivative of 
x with respect to 2, 

1 dx 22gh + 2(g 2 + h 2) + gh 
- - -  = 2 ( 2 3 )  
xd2 (1-2-,)(22+22gh+g-,+h2-1) 

shows that  x decreases from + ~ for 2 = - 1 to a min imum x., = g2 _ 1 for 
2 = -h/g and then increases again to + oo for 2 = +1. The other root  of 
the denomina tor  of (23), 2 =  -g/h, gives x = x M = h  2 -  1 < 0  and is not in 
the integrating interval. 

It js easily shown that  

lag + hi  2 h  + g 
( x - x ' ) m = ( l - 2 2 ) ' / 2 '  (X--XM)m (1 - -22)  1/2 

( ( x  - x , . ) ( x  - x M ) )  '/-, - 

122gh + 2(g 2 + h 2) +gh[ 
1 - -  22  

(24) 

and it follows that  

d2 (1 --  22) 1/2 

(2-, + 22gh + g-, + h-, - 1 )t/2 - +_dx 2 [ x ( x  - x,,,)(x - XM)] 1/-, 
(25) 

+ = s g n  2 +  

In order to bring together the contr ibutions of the two domains  
( - 1 ,  -h/g)  and (-h/g,  + 1), we have to calculate ( 1 -  2~)'/-, + ( 1 - 2 2 )  '/-,, 
where 2~ and 2, are the two roots of (22) which give the same x. F rom (24) 
we deduce 

( I  - 2 ~ ) ' / - ,  + ( I  - 2 ~ )  I/-, - 
1 

(x -- XM) u2 { (21 + 2z)h + 2g} 

-~ ( x - "  ~,/2 (26) - -  AM! 
l + x  

by taking into account  that the sum 21 +22  is -2gh/(1 +x) [ f rom (22)].  
Finally I(p, g) is obtained as an integral over x, 

f+oD d x  
I(~, g )=~-~  .... (1 +X)[X(X--Xm)] uzerf(px//-~)' x , , , = g 2 -  1 (27) 

which explicitly depends on only two variables. 
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Another transformation will be useful for obtaining the series 
expansion of L In (27) we write the error function as 

2 u  ! 
erf(u) = ~ I0 d z e  -'2"2 

") 2 set x--Xm + (V-/Z-~),  and integrate first over v: 

I(l~,g) .v /~Io 2 ' 2 J'o+~ = dz e" ~'" - do - -  

, j  

e - V -  

I)2 + Z2F2  

(28) 

_ -2v2 
zve (29) 

With the well-known integral representation for erfc(t) (s) 

2 , r + ~  dv e_V2 (30) erfc(/) = -  te '" | t2 x :o v 2 + 

I is easily obtained in variables (/a, v) 

= dz e t'2z2 erfc(vz) (31) 

In the self case (~=0) ,  integrating by parts (31) leads to 

I - e -Q 
Is(v) = I(/a = 0, v) - -  + ~ erfc(v) (32) 

V 

which is the result of Kelbg. 19) In the exchange case ( g =  1), integrating by 
parts (27) gives 

dx l + x  , 
IE(~) = I(~, g =  1 -"--F l o g - -  e -~'" (33) 

2V/- ~ X 

For any g, a similar expression can be obtained always by integrating (27) 
by parts and taking account of 

d g ~ / - X + ( X - - X m )  1/2 g 
- ~ x l O g g ' / ~ X - - ( X - - X ' )  (X + I)[X(X--X, , , )]  t/2, X,.= g2__ 1 (34) 

; i _,,, 
I(#, g) = log 1 2 w / ~  ....  x / x  g x / x - ( x - x . , )  )/2e 

which was first mentioned by Ceperley (l~ and which will be useful for 
obtaining the asymptotic expansion of I for large/a. 



1204 Vie illefosse 

5. SERIES EXPANSION FOR / 

Here we derive the series expansion for L By setting the series 
expansions of e ~'2-'2 and erfc(vz), 

_ 2_~_. E 1)" v2"+ J 
erfc(v) = 1 x/'~.,~>o ( -  m! (2m+ 1) (36) 

in (31) and integrating on z, we obtain I(/~, v), 

]2 2n /2 2n V 2m 

I ( /~ ,v)=x/~  Z ,(2n+l)-V ~ ( - 1 ) "  .~>o n" ,,~>o n! m! (2m+ l ) ( n + m  + 1) 
,,,~>o (37) 

The second series can be transformed by taking the variables ~ and 
x.,=g 2-  1. We set v2=f12(1 +Xm) and take together the terms with the 
same power of #; the coefficient of/~zp appears as a polynomial of degree 
p in x.,, 

P q 1 p - q  ( -  1)" 1 ~ .  ( - 1 ) u x ' '  Z 
P + l u =  o -~.2, ,=on!(p-q--n)!(n+q+l/2) 

(p~O)  (38) 

By using the identity 

~. ( - 1 ) "  = r ( z )  

,,=on!(w--n)!(n+z) F(w+l+z)  
(39) 

for z = q + �89 w = p - q, it follows that 

i t  2n 

l ( / ~ , g )=x /~  ~ ' ( 2 n + l )  
n ~ O  / / '  

F(3/2) ~ )uxq., F(q+ 1/2) 
- g u  ~ u 2p ( -1  q! r(1/2) p>~O (p+l)F(p+3/2)q o 

(40) 

This expression can be obtained from (27) and the polynomials come from 
the large-x expansion of l/(x + 1 )[x(x - x,,,)] J/z; the calculations are rather 
heavy and we shall' not give any details. These polynomials appear as a 
truncated series, so that the numerical calculation of the series (40) is easily 
done; the polynomial of order p + 1 is obtained by a simple addition to the 
polynomial of order p. I(#, g) is the difference between two converging 
series of#. The first one does not depend on g. Each series increases as 
e~'2/# 2 for increasing #, but the difference tends well to zero. 
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Let us consider the two limiting cases g--. 0o and g--* 1. In the self 
case/~---, 0 with g/~ = v fixed, it follows that 

Z ( - l ) "  (41)  
,,,~>o (m+ 1)! (2m+ 1) 

which can be obtained directly from (32). Now in the exchange case x,, --* 0 
all the polynomials tend to 1 and the series for 1 E is 

/a a" F(3/2) 
1E0.t) = ~ ~ n ! (2n + 1) Y" /tip +1 (42) 

.>~o e>~o ( p + l ) F ( p + 3 / 2 )  

6. A S Y M P T O T I C  EXPANSIONS 

For large value of p, I(p, g) exponentially tends to a simple expression 
(except for g---1). It is in fact easily seen that the contributions to the 
integral (35) arise from x such that x - x  m is of the order of 1//~ 2 and the 
integral tends to zero as exp(-p2x, , )  for large#. I(/~, g) well tends 
exponentially to the first term. The expansion of I(p, g) can be obtained by 
expanding the logarithm for ( x -  x,,)l/2 ,r g x/~. We set x = x,, + t/kl 2 and 
obtain 

2-~ ~+__~ 1 e - "  ~ .... 1 
l ( # , g ) =  log -- " x//-~ /a p~o(2p+l)g2p+t(lt2Xm) ?+1 

X dt e - ' t  :+1/2 1 + (43) 

We expand again (1 + t//~2x,,) - tr+~ in series of t, integrate over t, and 
bring together the terms of the same power of #2x,,,: 

i(lt, g)~_~_~logg+l e - / ' ~  ~ (_l)qF(q+3/2) 1 
g - 1  2pg q~o F(3/2) (]~2Xn,)q+l 

q q! 1 • ( -1 /"  
p=O ( 2 p + I ) p ! ( q - - P ) ! g  2p 

1 g + l  e-"2"'{.pl  3 1 ( - ~ g 2 )  
~ - ~ l o g g _  1 2/~g 2X m 2 (]./2Xm)2 1 - -  

"15 1 (1 - -  2 ,+7~14 ' ]+ . . .  } ( / t2x, ,>l )  (44) 
+ 4 (p2x,,,)3 3g- 5g J ' 

This is clearly an asymptotic expansion (in the mathematical meaning). It 
gives a good evaluation of I as soon as/fix, ,  is larger than 1. 

822/74/5-6-17 
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The term with exp(-p2x, ,)  occurs from diffusion. In the limit 
Ir-r ' l  ,>]~, G O in (16) can be set equal to a Dirac function. P~l~(r,r') is 
then only the average of the potential on the uniform motion from r' to r; 
a straightforward calculation gives 

P~ll (r ,r )~~ &l V r '+~( r - r ' )~  = ~ ( r * )  1/2 ~-~p l o g l  g - l l  (45) 

The diffusion effects decrease exponentially as soon as ~2xm=~2-v2 
exceeds unity. 

In the self case g --* o0, the expression (44) is simplified, ~2x., tends to 
v 2, the polynomials in 1/g tend to 1, and the first term tends to 1/gl~ = l/v: 

1 1 F ( q + 3 / 2 )  1 1 e-"2 
l s ( v ) ~ - - -  e -'2 ~ ( - 1 )  q ( v > l )  (46) 

v 2 F(3/2) v 2q+3 v 2v 3 q~>O 

Of course this result can be directly derived from (32). 
In the exchange case g - * l ,  Xm--*0, we start from (33) and set 

x = t/la2; log(1 + x)/x is equal to log/~2_ log t + log(1 + t/#2); integration 
of the first two terms is done with Euler's functions; the last term is 
expanded in power of t/l~2; it follows that 

~ {  1 } " 1 ~ ( - l ) q F ( q + 3 / 2 )  1 
IE(/~)~-- 1og(2/~)+~7 +4q~0 q + l  F(3/2) /~2q+3 

1 Iog(2~)+~7 +4--~5~3 (/1>1) (47) 

where Y is Euler's constant. IE(#) is a very slowly decreasing function for 
large ~ which plays an important part when calculating integrals of 
G~(r, -r ) .  

7. C O M P A R I S O N  W I T H  N U M E R I C A L  RESULTS 

Before comparing with the exact numerical results of Pollock, ~7~ we 
point out some properties of I(/~, g). When all distances vanish (Vg), I 
tends to x//-n. The value of P~(r, r') at the origin is exactly known as an 
integral or a series in powers of (z*)1/2.171 ~ is the exact value of the coef- 
ficient of (r*)~/2; the following term is z'n(1 -r t /3)/2 ~ -0.07r*. It appears 
that it is an upper bound of the error (for finite #, the error is less). Then 
the approximation P~(r, r')--.G(z*) t/2 I(/~, g) is valid within 7% for z* ~< 1 
(V/~ and g). 

The variations of I are very regular; I decreases with/2 for fixed g and 
decreases with g for fixed p. 
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Table I. Comparison of the Present Approximation wi th  Exact Value 
of P, from Pollock in the Direct and Exchange Cases ( T * = I )  

P,(r*,r*) P,(r*, --r*) 

r* I(.u = 0, v = r*) Pollock l(.u = r*, v = r*) Pollock 

0 1.772 45 1.703 78 1.772 45 1.703 78 
0.2 1.573 78 1,505 88 1.593 68 1,528 42 
0,5 1.292 29 1.232 07 1.387 33 1.332 14 
0,7 1.124 47 1.073 47 1.279 00 1.230 59 
1.0 0.910 93 0.875 58 1.147 24 1.107 64 
1.5 0.656 48 0.641 19 0.983 47 0.954 77 
2.0 0.499 13 0.493 25 0.864 40 0.843 00 
2.5 0.399 95 0,397 55 0.773 77 0.757 25 
3.0 0.333 33 0.332 21 0.702 06 0.689 14 

In Table I we compare the exact value of P~ from Pollock with the 
present approximation for ~ = 1, r* = 1, in the two cases g --* ~ and g = 1. 
It is easily seen that the approximation is improved with increasing/~. We 
also give (Table II)  results from series and asymptotic expansions with only 
a few terms in each case. The two expansions agree for intermediate 
distances. 

Table II. Values Obtained by Two-Term and Ten-Term Expansions 

r �9 

l (p=O,  v=r*) l(#=r*, v=r*) 

Series Asymptotic Series 
[Eq. (41)]a [Eq. (46)] h [Eq. (42)] a 

Asymptotic 
[Eq. (47)] ~ 

0 1.772 45 - -  1.772 45 - -  
0.50 1.292 29 - -  1.387 33 - -  
1.0 0.910 93 0.816 06 1.147 24 1.044 26 
1.5 0,656 48 0.651 05 0.983 46 0.974 20 
2.0 0.501 04 0.498 86 0.859 21 0.862 84 
2.5 -:- 0.399 94 - -  0.773 30 
3.0 - -  0.333 33 - -  0.701 94 

"Ten terms. 
Two terms. 
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8. VIRIAL COEFFICIENTS 

The thermodynamic functions of Coulomb fluids cannot be expanded 
in powers of the density as for fluids with short-range forces. Nevertheless 
integrals of G~(r, _+r) also appear in coefficients of the specific expansions 
for Coulomb fluids. C~) Here we evaluate these integrals within our approx- 
imation for v*~< 1 and compare with known results. We deal separately 
with the two cases (exchange and self). 

8.1. Exchange 

We want to calculate 

qE(Z*) = I dr G~(r, - - r ) =  ]e -*E~*) (48) 

with 

/ m "x 3/2 
G~(r,-r)"~2--~r ) exp [ -/~z - G(r*)'/2 Iz(/t)] (49) 

The value 1/8 is the perfect gas limit (3* = 0). As for P~, we shall calculate 
the first term in the expansion of ~'E in power of 3" by expanding 
expl - -G(3*)  I/2/El t o  first order in (r*) ~/2. It follows that 

~b E ,,~ G(3,)1/2 _4 f+~-' p2 d/~ e- '"IE(P) (50) 
7Z J O  

We take the integral (33) for IE, and se t  X---12/].12; we integrate by parts 
over p in order to remove the logarithm: 

1~4 +~dtfo (t2 +//2) /~ (51) q~E--- ~ , (3") / -  ~ I ~ +~a~e- t'- 

This integral is easily evaluated in polar coordinates and we find 

2 
q'E -- ---= ~,(r*) '/2 (52) 

For r * =  1, exp(+2 /x /~  ) are 3.09 and 0.324, respectively. The second 
value (repulsive potential) is to be compared with the exact value 0.340 by 
Jancovici c31 [e -~'E is 8A, where A is the integral (38) in the appendix of 
that paper]. For the attractive case a more precise value is 3.29, as we shall 
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see in a for thcoming paper. It is to be noticed that  qE is a really decreasing 
(increasing) exponential  function for repulsive (attractive) potential. We 
also observe that the first-order calculation of ~E gives a good evaluation 
for qE in the domain  r* < I. 

8.2.  S e l f  

As P~(r, r') behaves as 1/r at large distances, it is necessary to subtract  
from G~(r ,r)  all the terms which decrease slower than 1/r 3 before 
integrating on r, I'~ 

qs(r*)  = j" dr [ G~(r, r) - G ~ASl(r, r ) ]  (53) 

We calculate qE to first order by setting 1 - e , ( z * ) ~ / 2 I s ( v )  for e -e'cr'rl 
As Is(v) tends exponentially to 1/v, we obtain 

~(z*) ' /2  f0+ ~ I ! ]  qs('r*) = 2re v 2 dv Is(v) - (54) 

Is is given by (32). Integrat ing by parts over v yields 

qs(r*)  ~ e,(z*) 1/2 
12 x//- ~ (55) 

We notice that the sign of qs follows from the subtracted term 1/v. The 
contr ibution to the pressure propor t ional  to - q s  has the sign of - e ~ .  

We also mention that  the two expansions of qE(r*) and qs(r*)  in 
power of  (z*) t/2 coincide with the results of Kraeft  et aL 112~ 
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